АЛИЕВА Лола Зухурбековна

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЦИНКОВОГО СПЛАВА ЦАМСв4-1-2,5 С ЛИТИЕМ, НАТРИЕМ И КАЛИЕМ

Специальность 2.6.17 – Материаловедение (технические науки)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук Работа выполнена в лаборатории «Коррозионностойкие материалы» ГНУ «Институт химии им. В.И. Никитина Национальной академии наук Таджикистана».

Научный руководитель: Ганиев Изатулло Наврузович – доктор

химических наук, профессор, академик

Национальной академии наук Таджикистана

Официальные оппоненты: Амонзода Илхом Темур – доктор технических

наук, доцент, ректор Технологического

университета Таджикистана.

Сафаров Амиршо Гоибович кандидат химических наук, ведущий научный сотрудник исследования Центра И использования возобновляемых источников энергии при ГНУ «Физико-технический С.У. институт им. Умарова Национальной наук академии

Таджикистана».

Ведущая организация: Таджикский технический университет им. акад.

М.С. Осими, кафедра «Материаловедения,

металлургических машин и оборудования».

Защита состоится «05» июля 2023 г. в **9** ⁰⁰ часов на заседании диссертационного совета 73.1.002.02 при ГНУ «Институт химии им. В.И. Никитина НАН Таджикистана» по адресу: 734063, Республика Таджикистан, г. Душанбе, ул. Айни, 299/2. E-mail: dissovet@ikai.tj

С диссертацией можно ознакомиться в библиотеке и на сайте ГНУ «Институт химии им. В. И. Никитина Национальной академии наук Таджикистана»: www.chemistry.tj

Автореферат разослан «»202	23 года
----------------------------	---------

Учёный секретарь диссертационного совета, кандидат химических наук

Холикова Л.Р

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Примерно 30 % цинкового проката составляют цинковые листы общего назначения, которые подразделяются по толщине на четыре группы: 0.15-0.4 мм; 0.5-0.9 мм; 1.0-1.2 мм; 1.5 мм и более. Цинковые листы используют при изготовлении химических источников тока, оцинкованной посуды и др. Из цинковых листов изготавливают печатные формы к ротационным машинам в полиграфической промышленности. Цинковые аноды применяют для оцинкования деталей гальваническим способом. Большое количество цинковых листов расходуется в строительстве на кровельные покрытия, на изготовление труб, сточных желобов.

Наиболее широкое распространение цинк получил в качестве покрытия для предотвращения коррозии железа и сплавов на его основе (сталей). Для этой цели расходуется до 50% получаемого промышленностью цинка. Цинкование - это нанесение цинка или его сплавов на поверхность металлического изделия, применяется для защиты от коррозии стальных листов, проволоки, ленты, крепежных деталей, деталей машин и приборов, арматуры и трубопроводов.

Первоначально цинковое покрытие получали методом погружения детали в расплавленный цинк, так называемым горячим методом, который для крупногабаритных изделий, например трубопроводов, не потерял своего значения и в настоящее время. Для получения тонких цинковых покрытий чаще всего применяют электролитическое цинкование деталей. Оба рассмотренных метода выполнимы только в цеховых условиях.

Цинковый литейный сплав ЦАМ4-1 имеет хорошие механические свойства: предел прочности при растяжении составляет 300 МПа, а относительное удлинение при разрыве - 1 %. Температура плавления - 419,4 °C. Сплав тягуч и устойчив к коррозии, применяется для производства ответственных деталей. Все перечисленные характеристики позволили ЦАМ4-1 получить широкое применение в разного рода производстве.

Согласно ГОСТ 19424-97 содержание свинца в цинке марки ЦЗ достигает 2,0%, кадмия 0,2% и железа 0,1%. Металл такой марки, как известно, является не кондиционным, не находит потребителей и отсюда разработка состава новых сплавов на его основе является *актуальной задачей*. Содержание свинца в цинке и соответственно в сплаве по данным спектрального анализа составляло 2,5 мас.%, поэтому аббревиатура данного сплава нами была изменена на ЦАМСв4-1-2,5. Для улучшения характеристики сплавы серии ЦАМ легируются различными добавками. Сплав ЦАМСв4-1-2,5 (4%Al; 1%Cu; 2,5Pb) является литейным и в основном используется для производства отливок, получаемых литьём под давлением, реже — в кокиле и песчаных формах. Из этих сплавов можно получить очень точные по размерам, со сложными очертаниями контуров отливки, со стенкой толщиной порядка 0,6 мм.

Цель работы заключается в исследовании влияния добавок лития, натрия и калия на тепловые, термодинамические, кинетические и анодные свойства цинкового сплава ЦАМСв4-1-2,5 и разработке оптимального состава сплавов, которые предназначены в качестве анодных эффективных антикоррозионных

покрытий для защиты от коррозии металлических конструкций, изделий и сооружений.

Для достижения поставленной цели в диссертационной работе необходимо было решить следующие задачи:

- исследовать влияние температуры и состава сплавов на удельную теплоемкость и изменения термодинамических функций (энтальпия, энтропия, энергия Гиббса) цинкового сплава ЦАМСв4-1-2,5, легированного литием, натрием и калием;
- исследовать влияния добавок лития, натрия и калия на кинетику высокотемпературного окисления цинкового сплава ЦАМСв4-1-2,5, в твердом состоянии;
- исследовать коррозионно-электрохимическое поведение цинкового сплава ЦАМСв4-1-2,5, легированного литием, натрием и калием, в среде электролита NaCl;
- оптимизировать состав цинкового сплава ЦАМСв4-1-2,5, легированного литием, натрием и калием по комплексу критерий качества для их применения как эффективного анодного покрытия для защиты от коррозии металлических конструкций, изделий и сооружений.

Методы исследования и использованная аппаратура. Объектом исследования служил сплав цинка с алюминием, медью и свинцом выше указанного состава ЦАМСв4-1-2,5, а также металлические литий, натрий и калий. Исследования проводились потенциостатическим методом на импульсном потенциостате ПИ-50-1.1; рентгенофазовым анализом (ДРОН-3.0), термогравиметрическим методом на термогравиметрических весах; измерения теплоемкости твердых тел в режиме «охлаждения». Математическая обработка результатов проводилась с использованием стандартного пакета приложений и программ Microsoft Excel и Sigma Plot.

Научная новизна работы. На основе экспериментальных исследований установлена температурная зависимость удельной теплоёмкости и изменений термодинамических функций цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием. Получены кинетические и энергетические параметры процесса окисления указанных сплавов, в твердом состоянии. Определены фазовые составляющие продуктов окисления исследованных сплавов и показана их роль в механизме высокотемпературного окисления. Установлено влияние легирующих добавок лития, натрия и калия на коррозионно-электрохимическое поведение цинкового сплава ЦАМСв4-1-2,5, в среде электролита NaCl.

Практическая значимость работы. На основе проведённых экспериментальных исследований установлены оптимальные концентрации лития, натрия и калия в цинковом сплаве ЦАМСв4-1-2,5 и разработаны составы сплавов, отличающихся анодной устойчивостью. Сплавы могут использоваться в качестве анодного защитного покрытия для защиты от коррозии стальных изделий, конструкций и сооружений.

Выполненные научные исследования послужили основой для разработки состава новых сплавных покрытий, которые защищены двумя малыми

патентами Республики Таджикистан № ТЈ1260 от 10.05.2022г и № ТЈ1268 от 15.06.2022г.

Основные положения, выносимые на защиту:

результаты исследования температурной зависимости удельной теплоёмкости и изменений термодинамических функций (энтальпия, энтропия, энергия Гиббса) цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием;

результаты исследования кинетики высокотемпературного окисления цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием, в твердом состоянии, в атмосфере воздуха;

▶ результаты рентгенофазового анализа продуктов окисления цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием при высоких температурах;

▶ результаты исследования анодного поведения цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием, в среде электролита NaCl.

Личный вклад автора заключается в анализе литературных данных, в постановке и решении задач исследований, проведении экспериментальных исследований в лабораторных условиях, анализе полученных результатов, в формулировке основных положений и выводов диссертации.

Степень достоверности и апробация работы. Результаты диссертационной работы доложены и обсуждены на: Респ. научно-практ. конф. «Развитие энергетической отрасли в Республике Таджикистан», Технический колледж ТТУ им. М.С. Осими (Душанбе, 22 декабря 2021г.); Респ. научно-прак. конф. «Основные проблемы полной переработки хлопка в Республике Таджикистан», посвященной объявлению четвертой стратегической задачи промышленной индустриализации страны и 65-летию создания кафедры «Технологии переработки природного волокна», ТТУ им. М.С. Осими (г.Душанбе, 15 апреля 2021г.); Респ. научно-прак. конф. «Роль естественных наук и математики в подготовке современных научных кадров, преподавании и инжиниринга», посвященой 20-летию изучения и развития естественных, точных и математических наук (2020-2040 годы), 30 летию Государственной независимости РТ и 90-летию ТГПУ им. С. Айни (г. Душанбе, 14 сентября Респ. научно-прак. конф. «Фундаментальная наука - основа 2021г.); совершенствования технологий материалов», посвященной И Государственной независимости Республики Таджикистан, ГНУ «Центр исследований инновационных технологий» при НАНТ (г. Душанбе, 3 ноября 2021г.); Мат. Межд. научно-прак. конф. «Роль Российско-Таджикского (Славянского) университета в становлении и развитии науки и инновационного образования Республике Таджикистан», посвященного 30-летию В Государственной независимости РТ и 25-летию РТСУ (г.Душанбе, 15-16 научно-прак. «Современные 2021г.); Респ. конф. естественных наук», посвященной 30-летию Государственной независимости Республики Таджикистан и 25-летию РТСУ (г. Душанбе, 26 мая 2021г.); Мат. Межд. научно-прак. конф. «Достижение химической науки за 30 лет государственной независимости республики Таджикистан», посвященной 75летию Иститута химии имени В.И Никитина и 40-летию лаборатории "Коррозионностойких материалов" (г. Душанбе, 27 октября 2021).

Публикации. По результатам исследований опубликовано 15 работ, в том числе 5 статей в журналах, рекомендованных ВАК Министерства высшего образования и науки Российской Федерации и получено два малых патента Республики Таджикистан на составы разработанных сплавов.

Объём и структура работы. Диссертация состоит из введения, 4 глав, выводов, списка литературы и приложений. Работа изложена на 141 страницах компьютерного набора, включает 38 таблиц, 60 рисунка. Список литературы включает 138 наименований.

Во введении изложены предпосылки и основные проблемы исследования, обоснована актуальность работы, раскрыта структура диссертации.

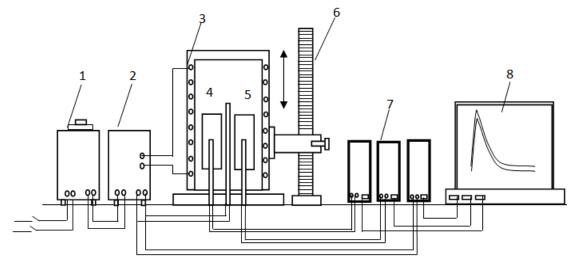
В первой главе рассмотрены производство и использование цинка и его сплавов; представлен обзор литературных данных в области теплофизических свойств и теплоёмкости цинка, алюминия, меди, свинца, лития, натрия и калия; структурные составляющие и фазы в оксидных пленках на основе цинкалюминиевых сплавов; коррозионное и анодное поведение цинка и покрытий на его основе. На основе выполненного обзора литературы показано, что теплофизические и термодинамические свойства, кинетика окисления, анодное поведение сплавов цинка с алюминием, медью, свинцом и щелочных металлов, частично изучены и для них имеются лишь скупые отрывочные сведения.

Таким образом, в связи с отсутствием систематических данных о физикохимических свойствах цинкового сплава ЦАМСв4-1-2,5, легированного литием, натрием и калием, последнный был взят в качестве объекта исследования в данной диссертационной работе.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ ГЛАВА 2. ИССЛЕДОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ И ИЗМЕНЕНИЙ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ ЦИНКОВОГО СПЛАВА ЦАМСв4-1-2,5, ЛЕГИРОВАННОГО ЛИТИЕМ, НАТРИЕМ И КАЛИЕМ

Существует много методов измерения теплоемкости твердых тел. В данной работе используется метод сравнения кривых охлаждения исследуемого образца с эталоном. Измеряемый образец, нагретый до температуры, превышающей температуру окружающей среды, будет охлаждаться. Скорость охлаждения зависит от теплоемкости материала образца. Сравнивая кривые охлаждения - термограммы (зависимости температуры от времени) двух образцов, один из которых служит эталоном с известной теплоемкостью, можно определить теплоемкость другого, т.е. неизвестного вещества по формуле:

$$C_{x}^{0} = C_{9}^{0} \frac{m_{9} \tau_{x}}{m_{x} \tau_{9}}, \tag{1}$$


где C_{2}^{0} – теплоемкость эталонного материала, m_{x} и m_{2} – массы исследуемого и

эталонного, τ_x и τ_y — измеренное время тепловой релаксации для исследуемого образца и эталона, которые равны $\tau_y = (\frac{dT}{d\tau})_1$ и $\tau_x = (\frac{dT}{d\tau})_2$.

В данной работе определены средние теплоемкости по всему измеряемому интервалу температур. Для всех образцов коэффициенты теплопередачи α предполагаются одинаковыми.

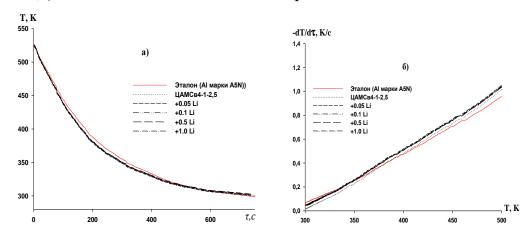
Схема установки для измерения теплоемкости сплавов представлена на рисунке 1. Электропечь 3 смонтирована на стойке 6, по которой она может перемещаться вверх и вниз (стрелкой показано направление перемещения). Образец 4 и эталон 5 (тоже могут перемещаться) представляют собой цилиндр длиной 30 мм и диаметром 16 мм с высверленными каналами с одного конца, в которые вставлены термопары. Концы термопар подведены к цифровому многоканальному термометру 7, который подсоединен к компьютеру 8.

Включаем электропечь через автотрансформатор 1, установив нужную температуру с помощью терморегулятора 2. По показаниям цифрового многоканального термометра отмечаем значение начальной температуры. Вдвигаем измеряемый образец и эталон в электропечь и нагреваем до нужной температуры, контролируя температуру по показаниям цифрового многоканального термометра на компьютере. Далее измеряемый образец и эталон одновременно выдвигаем из электропечи. С этого момента фиксируем снижение температуры и записываем показания цифрового термометра на компьютере через 10 с. Охлаждаем образец и эталон ниже 30 °C.

Рисунок 1 — Установка для определения теплоемкости твердых тел в режиме «охлаждения» [3,5,8].

Для измерения температуры использовали многоканальный цифровой термометр, который позволял прямо фиксировать результаты измерений на компьютере в виде таблиц. Точность измерения температуры составляла $0,1\,^{0}$ С. Временной интервал фиксации температуры составлял $10\,^{0}$ С составляла ошибка измерения температуры в интервале от $40\,^{0}$ С до $400\,^{0}$ С составляла $\pm 1\%$. Погрешность измерения теплоемкости по предлагаемой методике не превышает 4% в зависимости от температуры. Обработка результатов измерений производилась с помощью программы MS Excel. Графики строились с помощью программы Sigma Plot.

Сплав ЦАМСв4-1-2,5 с литием получали в шахтной лабораторной печи сопротивления типа СШОЛ (сопротивление шахтное опытное лабораторное) из цинка марки ЦЗ (ГОСТ 19424-97), алюминия марки А7 (ГОСТ 11069-2001), лития металлического (ГОСТ 87745-75), натрия металлического (ГОСТ 4568-95) и калия металлического (ГОСТ 3273-75) при температуре 500-550 °C. Состав полученных сплавов, которые содержали 0,05-1,0 мас.% щелочных металлов, контролировался взвешиванием шихты и полученных сплавов. При отклонении веса сплавов более чем на 1-2% отн., синтез сплавов проводился заново. Из полученных таким образом расплавов в металлический кокиль отливались цилиндрические образцы диаметром 16 мм и длиной 30 мм. Экспериментально полученные кривые охлаждения образцов из цинкового сплава ЦАМСв4-1-2,5 с литием представлены на рисунке 2а и описываются уравнением вида


$$T = ae^{-b\tau} + pe^{-k\tau}. (2)$$

где a b, p, k - постоянные для данного образца, t - время охлаждения.

Дифференцируя уравнение (2) по т, получаем уравнение для определения скорости охлаждения образцов из сплавов

$$\frac{dT}{d\tau} = -abe^{-b\tau} - pke^{-k\tau}. (3)$$

Из экспериментально полученных зависимостей температуры образцов от времени (рисунок 2a) и скоростей охлаждения образцов из сплавов (рисунок 2б), которые описываются полиномами (2) и (3), определяли их коэффициенты, проведя компьютерную обработку. Значения коэффициентов a, b, p, k, ab, pk в уравнении (3) для исследованных сплавов приведены в таблице 1.

Рисунок 2. График зависимости температуры от времени охлаждения (а) скорости охлаждения от температуры для (б) образцов из цинкового сплава ЦАМСв4-1-2,5, легированного литием и эталоном (Al марки A5N) [8,9].

Далее, по рассчитанным значениям величин скоростей охлаждения образцов из сплавов, по уравнению (1) была вычислена удельная теплоёмкость цинкового сплава ЦАМСв4-1-2,5 с литием. Результаты расчёта показывают, что температурная зависимость удельной теплоёмкости (Дж/(кг·К)) цинкового

сплава ЦАМСв4-1-2,5, легированного литием и эталоном (Al марки A5N) описывается уравнением типа

$$C_{P_0}^0 = a + bT + cT^2 + dT.^3 (4)$$

Значение коэффициентов в полиномы (4) получены обработкой результатов их расчёта по программе Sigma Plot и приведены в таблице 2.

Таблица 1. Значения коэффициентов в уравнении (3) для цинкового сплава ЦАМСв4-1-2,5 с литием и эталоном (Al марки A5N) [8,9].

Содержание лития	. V	<i>b</i> ·10 ⁻³ ,	V	$k \cdot 10^{-4}$,	ab,	$pk \cdot 10^{-2}$,
в сплаве, мас. %	a, K	c ⁻¹	<i>p</i> , K	c-1	Kc ⁻¹	Kc ⁻¹
0.0	213,82	5,47	316,83	0,953	1,17	3,02
0.05	213,82	5.47	315,83	0,956	1,17	3,02
0.1	213,82	5.47	316,93	0,952	1,17	3,02
0.5	213,82	5.46	317,83	0,949	1,17	3,02
1.0	213,82	5.47	317,33	0,951	1,17	3,02
Эталон	206,29	5,14	331,07	1,466	1,06	4,85

Таблица 2.2. Значения коэффициентов a, b, c, d в уравнении (4) цинкового сплава ЦАМСв4-1-2,5 с литием и эталоном (Al марки A5N) [8].

Содержание лития в сплаве, мас. %	<i>а</i> , Дж/(кг·К)	<i>b</i> , Дж/(кг·К²)	<i>с</i> , Дж/(кг·К³)	<i>d</i> ·10 ⁻⁵ , Дж/(кг·К) ⁴	Коэффициен т корреляции R
0.0	-1684,38	13,45	-0,03	2,32	0,99
0.05	-2358,07	18,01	-0,04	3,02	0.99
0.1	-2437,60	18,55	-0,04	3,10	0.99
0.5	-2519,98	19,14	-0,04	3,19	0.99
1.0	-2467,61	18,75	-0,04	3,12	0.99
Эталон	693,77	0,99	-0,00	3,13	1.00

Результаты расчёта температурной зависимости теплоемкости сплава ЦАМСв4-1-2,5 с литием по формулам (1) и (4) через 50 К представлены на рисунке 3а и в таблице 3. Из таблицы видно, что теплоемкость сплавов от температуры и от содержания лития увеличивается.

Используя вычисленные значения теплоемкости цинкового сплава ЦАМСв4-1-2,5 с литием и экспериментально полученные величины скоростей охлаждения образцов, нами был рассчитан коэффициент теплоотдачи $\alpha(T)$ для сплавов и эталона (Al марки A5N) по следующей формуле:

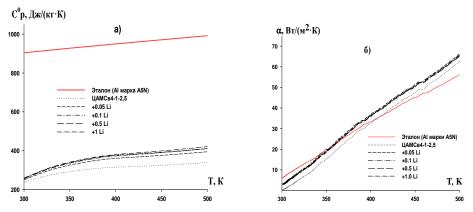
$$\alpha = \frac{C_P^0 m \frac{dT}{d\tau}}{(T - T_0) \cdot S}.$$
 (5)

Для цинкового сплава ЦАМСв4-1-2,5, легированного литием, температурная зависимость коэффициента теплоотдачи имеет вид (рисунок 3б).

Для расчета температурной зависимости изменений энтальпии, энтропии и энергии Гиббса сплавов по (6) - (8) были использованы интегралы от удельной теплоемкости по уравнению (4):

$$[H^{0}(T) - H^{0}(T_{0})] = a(T - T_{0}) + \frac{b}{2}(T^{2} - T_{0}^{2}) + \frac{c}{3}(T - T_{0}^{3}) + \frac{d}{4}(T^{4} - T_{0}^{4});$$
(6)

$$[S^{0}(T) - S^{0}(T_{0})] = a \ln \frac{T}{T_{0}} + b(T - T_{0}) + \frac{c}{2}(T^{2} - T_{0}^{2}) + \frac{d}{3}(T^{3} - T_{0}^{3});$$
(7)


$$[G^{0}(T) - G^{0}(T_{0})] = [H^{0}(T) - H^{0}(T_{0})] - T[S^{0}(T) - S^{0}(T_{0})],$$
(8)

где $T_0 = 298,15$ К.

Результаты расчета температурной зависимости изменений энтальпии, энтропии и энергии Гиббса по уравнениям (6) - (8) через 50 К представлены в таблице 3.

Таблица 3. Температурная зависимость удельной теплоёмкости (Дж/(кг·К)) цинкового сплава ЦАМСв4-1-2,5 с литием и эталоном (Al марки A5N) [8].

Содержание	T.K						
лития в сплаве,	300	350	400	450	500		
мас. %	300	330	400		300		
0.0	240,92	293,70	316,29	326,07	340,46		
0.05	250,06	326,52	361,04	376,25	394,82		
0.1	255,47	335,94	373,16	390,38	410,85		
0.5	257,38	339,39	376,37	392,25	410,96		
1.0	259,18	341,68	380,51	399,14	421,04		
Эталон	903,82	927,44	949,56	970,83	991,92		

Рисунок 3. Температурная зависимость удельной теплоёмкости (а) и коэффициента теплоотдачи (б) цинкового сплава ЦАМСв4-1-2,5, легированного литием и эталоном (Al марки A5N) [8,9].

Таким образом, в режиме «охлаждения» по известной теплоёмкости эталонного образца из алюминия марки A5N, установлена температурная зависимость теплоёмкости цинкового сплава ЦАМСв4-1-2,5 с литием. Получены полиномы, описывающие температурную зависимость теплоемкости и изменений термодинамических функций (энтальпия, энтропия, энергия Гиббса) цинкового сплава ЦАМСв4-1-2,5 с литием в интервале температур 300 - 500 К.

Таблица 4. Температурная зависимость изменений термодинамических функции цинкового сплава ЦАМСв4-1-2,5 с литием

и эталоном (Al марки A5N) [8].

	H 51aHonon	(
Содержание			T,K				
лития в сплаве,	300	350	400	450	500		
мас. %	$\Big[H^0$	$(T)-H^0\left(T_0^*\right)$)], кДж/кг д	іля сплаво	В		
0.0	0,44	13,97	29,31	45,39	61,99		
0.1	0,47	15,48	33,34	52,46	72,43		
0.5	0,47	15,63	33,66	52,91	72,93		
1.0	0,47	15,73	33,91	53,44	73,88		
Эталон	1,58	44,35	86,64	127,90	167,56		
$\left[S^{0}(T)-S^{0}\left(T_{0}^{*}\right)\right]$, кДж/(кг·К) для сплавов							
0.0	0,00	0,04	0,08	0,12	0,16		
0.1	0,00	0,05	0,09	0,14	0,18		
0.5	0,00	0,05	0,10	0,14	0,18		
1.0	0,00	0,05	0,10	0,14	0,19		
Эталон	0,01	0,15	0,27	0,38	0,49		
	$\Big[G^0($	$(T)-G^0\left(T_0^*\right)$], кДж/кг дл	я сплавов			
0.0	-0,00	-1,11	-4,30	-9,46	-16,44		
0.1	-0,00	-1,21	-4,80	-10,70	-18,78		
0.5	-0,00	-1,22	-4,84	-10,80	-18,94		
1.0	-0,00	-1,23	-4,87	-10,88	-19,11		
Эталон	-0,09	-6,99	22,16	-45,39	-76,67		

 $^*T_0 = 298,15 \text{ K}$

С помощью полученных полиномных зависимостей показано, что с ростом температуры теплоёмкость, энтальпия и энтропия сплавов увеличиваются, а значения энергии Гиббса уменьшаются. Добавки лития в изученном концентрационном интервале (0,05 - 1,0 мас. %) увеличивают теплоёмкость, энтальпию и энтропию цинкового сплава ЦАМСв4-1-2,5, а значение энергии Гиббса при этом уменьшается.

Результаты исследования влияния добавок лития, натрия и калия на теплоемкость и изменения термодинамических функций цинкового сплава ЦАМСв4-1-2,5, легированного литием, натрием и калием, обобщены в таблицах 5, 6. Для сплавов, содержащих 1.0 мас. % легирующего компонента наблюдается рост теплоемкости, энтальпии и энтропии сплавов от температуры и снижения энергии Гиббса.

По проведённому циклу исследований теплофизических свойств и термодинамических функций цинкового сплава ЦАМСв4-1-2,5, легированного различными количествами лития, натрия и калия, можно заключить, что в целом для указанных сплавов с повышением температуры значения теплоёмкости, энтальпии и энтропии увеличиваются, энергия Гиббса при этом снижается.

Таблица 5. Температурная зависимость удельной теплоёмкости (Дж(кг· K)) цинкового сплава ЦАМСв4-1-2,5, легированного 1.0 мас.% литием, натрием и калием и эталоном (Al марки A5N)

Содержание		T, K				
легирующего						
компонента в сплаве,	300	350	400	450	500	
мас%						
0.0	240,92	293,70	316,29	326,07	340,46	
1.0 Li	259,18	341,68	380,51	399,14	421,04	
1.0 Na	253,34	337,23	376,91	395,79	417,28	
1.0 K	251,63	332,03	368,29	383,94	402,55	
Эталон	903,82	927,44	949,56	970,83	991,92	

Таблица 6. Температурная зависимость изменений энтальпии, энтропии и энергии Гиббса для цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием и эталоном (Al марки A5N)

калием и эталоном (Ат марки АЭМ)							
Содержание		T, K					
легирующего	300	350	400	450	500		
компонента в сплаве, мас. %	$[H^0]$	$[H^0(T) - H^0(T_0^*)]$, кДж/кг для сплавов					
0.0	0,44	13,97	29,31	45,39	61,99		
1.0 Li	0,46	15,46	33,45	52,81	73,07		
1.0 Na	0,46	15,46	33,45	52,81	73,07		
1.0 K	0,46	15,28	32,92	51,77	71,37		
Эталон	1,58	44,35	86,64	127,90	167,56		
	$[S^0(T) - S^0(T_0^*)], к ot \!$						
0.0	0,00	0,04	0,08	0,12	0,16		
1.0 Li	0,00	0,05	0,10	0,14	0,18		
1.0 Na	0,00	0,05	0,10	0,14	0,18		
1.0 K	0,00	0,04	0,09	0,13	0,17		
Эталон	0,01	0,15	0,27	0,38	0,49		
	$[G^0(T)-G$	$(T_0^*)], кДх$	к/кг для сі	плавов			
0.0	-0,00	-1,11	-4,30	-9,46	-16,44		
1.0 Li	-0,00	-1,21	-4,79	-10,72	-18,86		
1.0 Na	-0,00	-1,21	-4,79	-10,72	-18,86		
1.0 K	-0,00	-1,19	-4,73	-10,56	-18,53		
Эталон	-0,09	-6,99	-22,16	-45,39	-76,67		

 $T_0^* = 298,15 \text{ K}$

При переходе от сплавов с литием к сплавам с натрием и калием наблюдается уменьшение теплоемкости, энтальпии, энтропии и рост энергии Гиббса, что в целом коррелируется с изменением теплоемкости щелочных металлов в пределах подгруппы.

В рамках данной работы, для определения твердости, применяли механический пресс типа ТП-2. Результаты исследования твердости по

Бринеллю сплава ЦАМСв4-1-2,5 с щелочными металлами (ЩМ) приведены в таблице 7. Испытанию подвергались образцы толщиной 10мм, диметром 14мм. Среднее значение твёрдости определено по результатам 3-х измерений.

Таблица 7. Твердость и расчетная прочность цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием.

№	Содержание	Тверд	ость, кг/		Прочность, МПа
п/н	легирующего	HRA	HRC	HB	•
	компонента в				
	сплаве, мас. %				
1	+0,0	65,10	29,0	275	247,5
2	+0,05Li	63,00	24,4	244	219,6
3	+0,1Li	64,20	27,0	262	235,8
4	+0,5Li	65,50	29,7	280	252,0
5	+1,0 Li	70,10	39,3	368	331,2
6	+0,05Na	64,90	28,3	271	243,9
7	+0,1Na	65,00	30,0	282	253,8
8	+0,5Na	67,20	33,3	308	277,2
9	+1,0Na	73,50	45,4	432	388,8
11	+0,05K	65,70	30,3	285	256,5
12	+0,1K	67,10	33,4	309	278,1
13	+0,5K	66,40	32,0	297	267,3
14	+1,0K	73,90	46,0	441	396,9

Как видно из таблицы 7, при добавке щелочных элементов до 1,0 мас.% твердость исходного сплава повышается от 275 до 432 кг/мм² повышается при содержании 1,0 мас.% Na и 441 кг/мм² при 1,0 мас.% К. При увеличении концентрации ЩМ до 0,5 мас.% значительный рост твердости сплавов не наблюдается. Среди изученных щелочных элементов наибольшее положительное воздействие на твердость исходного сплава оказывает добавка калия.

По известной приближенной зависимости $\sigma_{\rm B}$ = κ ·HB, Па, где κ = 0,09. рассчитана прочность сплавов, результаты которых приведены в таблице 7. Среди исследованных составов максимальное значение расчетной прочности приходится на сплавы, модифицированные натрием и калием. Исходя из результатов изучения микроструктуры сплавов, такой характер влияния ЩМ можно объяснить их модифицирующим эффектом на микроструктуру эвтектик в сплаве ЦАМСв4-1-2,5.

ГЛАВА 3. ИССЛЕДОВАНИЕ КИНЕТИКИ ОКИСЛЕНИЯ ЦИНКОВОГО СПЛАВА ЦАМСв4-1-2,5 С ЛИТИЕМ, НАТРИЕМ И КАЛИЕМ, В ТВЕРДОМ СОСТОЯНИИ

Практический и научный интерес представляет исследование кинетики окисления сплавов и твердых металлов кислородом газовой фазы. В результате такого взаимодействия ухудшается качество поверхности сплава, механические свойства изделий снижаются, сплав загрязняется оксидными включениями.

Решение этих вопросов в результате определения механизма окисления и кинетических параметров процесса позволит получить дополнительную информацию о процессе окисления.

Для изучения кинетики окисления цинкового сплава ЦАМСв4-1-2,5 (Al-4%; Cu-1%; Pb-2.5%; Zn-остальное), легированного литием в изотермических условиях, использовали термогравиметрический метод, основанный на непрерывном взвешивании образцов из сплавов, в твердом состоянии. Подробная методика исследования приведена в работе [2].

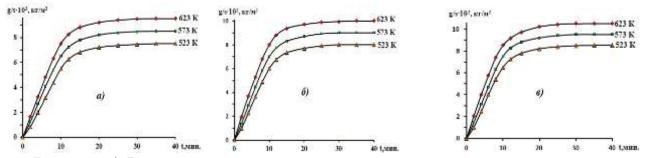

Для исследования влияния лития на кинетику окисления цинкового сплава ЦАМСв4-1-2,5, в твердом состоянии была синтезирована серия сплавов с содержанием лития от 0.05 до 1.0% по массе. Сплавы для исследования получили из цинка марки ЦЗ (ГОСТ 19424-97), алюминия марки А7 (ГОСТ 11069-2001) и лития металлической марки ЛЭ-1 (ГОСТ 87745-75). Исследование проводили в атмосфере воздуха при температурах 523, 573 и 623 К. Результаты исследования представлены на рисунках 4-7 и в таблицах 8, 9.

Таблица 8. Кинетические и энергетические параметры процесса окисления цинкового сплава ЦАМСв4-1-2,5 с литием, в твердом состоянии [2,14]

цинкового сплава ЦАМСв4-1-2,5 с литием, в твердом состоянии [2,14]							
Содержание	Содержание Температура		Кажущаяся энергия				
лития в	окисления,	окисления $K \cdot 10^4$,	активации,				
сплаве, мас. %	К	кг·м ⁻² ·сек ⁻¹	кДж/моль				
	523	3.48					
0.0	573	3.53	136.8				
	623	3.60					
	523	3.59					
0.05	573	3.64	125.5				
	623	3.71					
	523	3.63					
0.1	573	3.68	121.0				
	623	3.76					
	523	3.68					
0.5	573	3.74	117.9				
	623	3.80					
	523	3.73					
1.0	573	3.79	114.1				
	623	3.84					

Кинетические кривые окисления цинкового сплава ЦАМСв4-1-2,5 в твердом состоянии (рисунок 4a) характеризуются более растянутым процессом формирования оксидной плёнки на начальном этапе окисления. Скорость окисления данного сплава в зависимости от времени и температуры, незначительно увеличивается. Однако рост удельной массы образца к 20 минутам приобретает постоянное значение. Истинная скорость окисления, вычисленная по касательным, проведённым от начала координат к кривым и рассчитанная по формуле $K=g/s\cdot\Delta t$, составляет $3.48\cdot10^{-4}$ и $3.6\cdot10^{-4}$ кг·м²·сек-1,

соответственно при температурах 523 и 623 К. Кажущаяся энергия активации окисления, вычисленная по тангенсу угла наклона прямой зависимости $-\ell g K$ -1/T составляет 136,8 кДж/моль (таблица 8).

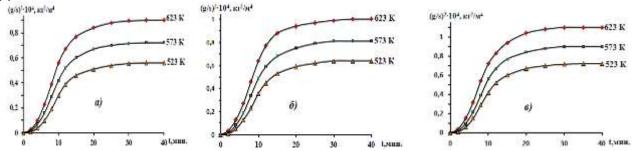


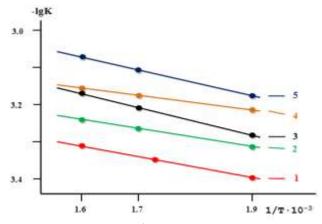
Рисунок 4. Кинетические кривые процесса окисления цинкового сплава ЦАМСв4-1-2.5 (а), содержащего литий, мас. %:0.05(6), 0.5(8), в твердом состоянии [2,14].

При температурах 523 и 623 К значение истинной скорости окисления сплава, содержащего 0.05 мас.% лития, изменяется от $3.59 \cdot 10^{-4}$ до $3.71 \cdot 10^{-4}$ кг·м²·с¹. Кажущаяся энергия активации окисления при этом составляет 125.5 кДж/моль (табл.8).

Кинетические кривые процесса окисления цинкового сплава ЦАМСв4-1-2.5, содержащего 0.5 мас.% лития, приведены на рисунке 4в. Данный сплав подвергался окислению при температурах 523, 573 и 623 К. Истинная скорость окисления составляет величину $3.68\cdot10^{-4}$ и $3.80\cdot10^{-4}$ кг·м²·сек-1 при 523 и 623 К. Кажущаяся энергия активации при этом составляет 117.9 кДж/моль.

Квадратичные кинетические кривые окисления цинкового сплава ЦАМСв4-1-2.5 с содержанием 0.05; 0.1; 0.5 и 1.0 мас. % лития в координатах $(g/s)^2$ -t представлены на рисунке 5. Непрямолинейный характер данных кривых свидетельствует о непараболическом механизме окисления сплавов. Процесс окисления сплавов подчиняется общему уравнению $y=K\cdot X^n$, где значение $n=1\div 3$ (таблица 9). Кинетические кривые описываются гиперболическим уравнением.

Рисунок 5. Квадратичные кинетические кривые процесса окисления цинкового сплава ЦАМСв4-1-2.5 с литием, мас. %: 0.1(a); 0.5(б); 1.0(в), в твердом состоянии [2,14].


На рисунке 6 изображена зависимость -lgK-1/T для цинкового сплава ЦАМСв4-1-2.5, содержащего 0.05; 0.1; 0.5; 1.0 мас. % лития, которые имеют прямолинейный характер. Видно, что кривые окисления, относящиеся к сплавам с литием, располагаются выше кривой исходного сплава. По тангенсу

угла наклона данных прямых и была рассчитана величина кажущейся энергии активации процесса окисления сплавов (таблица 8).

Таблица 9. Результаты математической обработки квадратичных кинетических кривых окисления цинкового сплава ЦАМСв4-1-2.5 с литием,

в твёрдом состоянии [2]

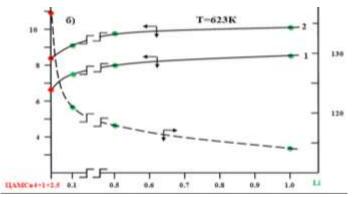

	_		Коэф-ент
Содержание	Темп-ра	Полиномы квадратичных	регресси
лития в	окисления,	кинетических кривых окисления	и
сплаве, мас. %	К	сплавов	R
	523	$y = -0.5 \cdot 10^{-1} x^3 - 1.2 \cdot 10^{-2} x^2 + 0.591 x$	0,992
0.0	573	$y = -0.5 \cdot 10^{-3} x^3 - 1.5 \cdot 10^{-2} x^2 + 0.694 x$	0,994
	623	$y = -0.5 \cdot 10^{-5} x^3 - 2.4 \cdot 10^{-2} x^2 + 0.874 x$	0,995
	523	$y = -0.2 \cdot 10^{-3} x^3 - 1.95 \cdot 10^{-2} x^2 + 0.651 x$	0,985
0.05	573	$y = -0.3 \cdot 10^{-2} x^3 - 2.63 \cdot 10^{-2} x^2 + 0.8062 x$	0,989
	623	$y = -0.4 \cdot 10^{-4} x^3 - 3.38 \cdot 10^{-2} x^2 + 0.9676 x$	0,993
	523	$y = -0.2 \cdot 10^{-1} x^3 - 2.24 \cdot 10^{-2} x^2 + 0.7211x$	0,987
0.1	573	$y = -0.3 \cdot 10^{-3} x^3 - 3.02 \cdot 10^{-2} x^2 + 0.8893 x$	0,993
	623	$y = -0.4 \cdot 10^{-5} x^3 - 3.72 \cdot 10^{-2} x^2 + 1.0472 x$	0,995
	523	$y = -0.3 \cdot 10^{-3} x^3 - 2.59 \cdot 10^{-2} x^2 + 0.8016 x$	0,989
0.5	573	$y = -0.4 \cdot 10^{-5} x^3 - 3.31 \cdot 10^{-2} x^2 + 0.962 x$	0,993
	623	$y = -0.5 \cdot 10^{-6} x^3 - 4.19 \cdot 10^{-2} x^2 + 1.1435 x$	0,996
1.0	523	$y = -0.3 \cdot 10^{-2} x^3 - 2.9 \cdot 10^{-2} x^2 + 0.8729 x$	0,989
	573	$y = -0.4 \cdot 10^{-5} x^3 - 3.62 \cdot 10^{-2} x^2 + 1.0346 x$	0,993
	623	$y = -0.5 \cdot 10^{-4} x^3 - 4.51 \cdot 10^{-2} x^2 + 1.2159 x$	0,996

Рисунок 6. Зависимость $-\ell$ gK от 1/T для цинкового сплава ЦАМСв4-1-2.5, содержащего литий, мас. %: 0.0(1); 0.05(2); 0.1(3); 0.5(4); 1.0(5) [2, 14].

На рисунке 7 представлены изохронны окисления цинкового сплава ЦАМСв4-1-2.5, легированного литием. Видно, что от содержания лития в цинковом сплаве ЦАМСв4-1-2.5 привесь образцов увеличивается и это сопроваждается снижением кажущейся энергии активации процесса окисления сплавов. Как известно, окисление металлов при высоких температурах приводит, как правило, к образованию на поверхности образцов оксидной плёнки или окалины. Образующаяся плёнка оксида и определяет механизм

окисления. Характер окисления зависит также от плотности образующегося в результате окисления оксида.

Рисунок 7. Изохронны окисления цинкового сплава ЦАМСв4-1-2.5 с литием при температурах 523 К (а) и 623 К (б) [2].

Плотная плёнка служит преградой, разделяющей металл и газообразный кислород. В случае, когда на поверхности оксида находится достаточное количество кислорода, скорость окисления при высоких температурах определяется диффузией в твердом состоянии кислорода через плотный слой оксида. Плотная плёнка обладает наилучшими защитными свойствами и с точки зрения практики представляет собой ценную особенность окисления металлов.

Таким образом, методом термогравиметрии показано, что легирование литием цинкового сплава ЦАМСв4-1-2.5 увеличивает скорость его окисления, что сопровождается уменьшением величины кажущейся энергии активации процесса окисления сплавов от 136,8 до 114.1 кДж/моль. Скорость окисления сплавов имеет порядок 10⁻⁴ кг·м⁻²·с⁻¹. Моделированием квадратичных кинетических кривых окисления сплавов показано, что процесс окисления описывается гиперболическим уравнением.

Исследование продуктов окисления цинкового сплава ЦАМСв4-1-2,5 с литием проводилось методом рентгенофазового анализа. В качестве примера, на рисунке 8 приведены рентгенограммы продуктов окисления цинкового сплава ЦАМСв4-1-2,5 с 1.0 мас. % литием. Исследование продуктов окисления данных сплавов показало, что основными продуктами окисления являются Al_2O_3 ; Li_2O_3 ; $CuAlO_2$; $CuO\cdot Al_2O_3$, Cu_4O_3 ; ZnO; Li_8PbO_6 .

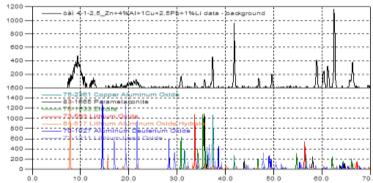


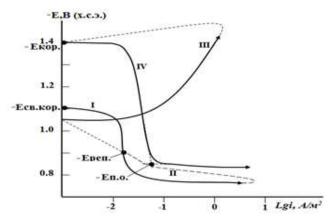
Рисунок 8. Рентгенограммы продуктов окисления цинкового сплава ЦАМСв4-1-2,5 с 1.0 мас. % литием.

Таким образом, методом термогравиметрии показано, что легирование литием цинкового сплава ЦАМСв4-1-2.5 увеличивает скорость его окисления, что сопровождается уменьшением величины кажущейся энергии активации процесса окисления сплавов от 136,8 до 114.1 кДж/моль. Скорость окисления сплавов имеет порядок 10⁻⁴ кг·м⁻²·с⁻¹. Моделированием квадратичных кинетических кривых окисления сплавов показано, что процесс окисления описывается гиперболическим уравнением.

В таблице 10 обобщены величины кажущейся энергии активации окисления цинкового сплава ЦАМСв4-1-2.5 с литием, натрием и калием, различной концентрации. Среди легирующих элементов наибольшее значение кажущейся энергии активации процесса имеют сплавы с литием.

Таблица 10. Зависимость кажущейся энергии активации, кДж/моль процесса окисления цинкового сплава ЦАМСв4-1-2.5 с литием, натрием и калием,

Легирующий компонент	Содержание добавка, мас. %				
сплава	0.0	0.05	0.1	0.5	1.0
Литий		125.5	121.0	117.9	114.1
Натрий	136.8	122.0	118.1	114.9	109.5
Калий		115.5	113.1	109.9	107.5


На основании проведенных исследований кинетики процесса окисления цинкового сплава ЦАМСв4-1-2.5 с литием, натрием и калием, в твердом состоянии установлены следующие закономерности изменения энергетических и кинетических характеристик процесса их окисления.

- 1. Установлено, что окисление сплавов описывается гиперболическим уравнением с истинной скоростью процесса окисления порядка 10^{-4} кг·м⁻²·сек⁻¹.
- 2. Выявлено, что самое максимальное значение кажущейся энергии активации процесса окисления имеет цинковый сплав ЦАМСв4-1-2.5 с литием, а минимальное относятся к сплавам, легированным калием.

ГЛАВА 4. ПОТЕНЦИОСТАТИЧЕСКОЕ ИССЛЕДОВАНИЕ АНОДНОГО ПОВЕДЕНИЯ ЦИНКОВОГО СПЛАВА ЦАМСВ4-1-2.5 С ЛИТИЕМ, НАТРИЕМ И КАЛИЕМ, В СРЕДЕ ЭЛЕКТРОЛИТА NaCl

Из полученных в печах СШОЛ сплавов отливались цилиндрические образцы длиной 140 мм и диаметром 8 мм, торцевая часть которых служила рабочим электродом. Исследования проводились на потенциостате ПИ-50-1.1 с самописцем ЛКД-4 в средах 0.03-, 0.3- и 3%-ного электролита NaCl при скорости развёртки потенциала 2 мВ·с-1. В качестве электрода сравнения хлорид-серебряный электрод. Bce значения электрода. относительно Поляризационные приведены ЭТОГО фиксировались с помощью самописца ЛКД-4. По изменению хода потенциала и тока определялись основные электрохимические параметры процесса анодного поведения сплавов.

электрохимических исследований образцы поляризовали положительном направлении от потенциала установившегося (потенциал свободной коррозии или стационарный Е_{св,кор.}) до значения потенциала, при котором происходит резкое возрастание плотности тока -1 A/m^2 (рисунок 9, кривая І). Затем образцы поляризовали в обратном направлении и в точке пересечения кривых I и II определяли величину потенциала репессивации Е_{р.п.} (рисунок 9, кривая II). Для удаления оксидной плёнки с поверхности рабочего электрода образцы поляризовали в катодную область, в результате чего происходило подщелачивание при электродном слое поверхности образца (рисунок 9, кривая III). Наконец, образцы повторно поляризовали в положительном направлении (рисунок 9, кривая IV). При этом, при переходе от катодного к анодному ходу фиксируется потенциал питингообразования (Еп.о.).

Рисунок 9. Полная потенциодинамическая поляризационная (2мB/c) кривая цинкового сплава ЦАМСв4-1-2,5, в среде электролита 3 %-ного NaCl. E — потенциал (B), i — плотность тока $(A \cdot M^{-2})$ [4].

На полученных таким образом потенциодинамических кривых определяли основные электрохимические характеристики сплавов. Это потенциал коррозии $(E_{\text{кор.}})$, потенциалы питтингообразования $(E_{\text{п.о.}})$ и репассивации $(E_{\text{р.п.}})$ и плотность тока коррозии $(i_{\text{кор}})$.

Ток коррозии, как основной электрохимический показатель процесса коррозии, рассчитывался по катодной кривой с учётом тафелевской наклонной b_{κ} =0,122. Скорость коррозии является функцией тока коррозии и рассчитывалась по формуле K= $i_{\text{кор.}} \cdot \kappa$, где κ – электрохимический эквивалент, среднее значение которого для цинка составляет 1,22 г/A·ч.

В данном подразделе приводятся обобщённые результаты, полученные при исследовании коррозионно-электрохимических характеристик и анодного поведения цинкового сплава ЦАМСв4-1-2,5 в зависимости от содержания лития, натрия и калия в сплаве в растворе электролита NaCl различной концентрации (таблицы 11 и 12).

Определено, что для цинкового сплава ЦАМСв4-1-2,5 при легировании его литием, натрием и калием, отмечается смещение потенциала коррозии в область более положительных значений с увеличением содержания указанных легирующих компонентов. Также существенное влияние на потенциал коррозии цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием

оказывает концентрация электролита и отмечена тенденция снижения значений потенциалов свободной коррозии при увеличении концентрации электролита NaCl. Чем выше концентрация раствора NaCl, тем ниже величины потенциалов свободной коррозии исследуемых сплавов.

Таблица 11. Потенциалы (х.с.э.) свободной коррозии (- $E_{\text{св.кор.}}$, B) и питтингообразования (- $E_{\text{п.о.}}$, B) цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием, в среде электролита NaCl

Среда	Содержание Li,	Сплавн		Сплавь		Сплавы с К	
NaCl, mac. %	Nа и K в сплаве, мас. %	-Есв.кор.	-E _{п.о.}	-Есв.кор.	-E _{п.o.}	-Есв.кор.	-E _{п.o.}
	-	1,064	0,800	1,064	0,800	1,064	0,800
	0.05	1,045	0,780	1,034	0,770	1,026	0,760
0.03	0.1	1,033	0,769	1,023	0,760	1,018	0,750
	0.5	1,020	0,758	1,012	0,751	1,008	0,740
	1.0	1,009	0,749	1,001	0,741	0,996	0,730
	-	1,080	0,835	1,080	0,835	1,080	0,835
	0.05	1,056	0,820	1,048	0,808	1,040	0,800
0.3	0.1	1,045	0,810	1,037	0,798	1,028	0,791
	0.5	1,032	0,800	1,026	0,789	1,017	0,780
	1.0	1,020	0,790	1,015	0,780	1,009	0,770
	-	1,103	0,850	1,103	0,850	1,103	0,850
	0.05	1,078	0,832	1,068	0,820	1,060	0,808
3.0	0.1	1,065	0,821	1,057	0,810	1,050	0,797
	0.5	1,053	0,811	1,048	0,801	1,040	0,786
	1.0	1,040	0,800	1,037	0,790	1,030	0,775

Так, для цинкового сплава ЦАМСв4-1-2,5 с калием (1,0 мас. %) отмечается самый низкий потенциал свободной коррозии, в среде электролита 3,0% NaCl -1,030 B, а самый высокий потенциал -1,009 B отмечается у цинкового сплава ЦАМСв4-1-2,5 с литием (1,0 мас%) в растворе 0,03%-ного NaCl.

Зависимость изменения потенциалов питтингообразования и репассивации исследуемых сплавов от содержания в цинковом сплаве ЦАМСв4-1-2,5 с литием, натрием и калием показывают, что, чем выше содержание в сплаве указанных добавок, электрохимические потенциалы характеризуются сдвигом в область положительных значений. Кроме того, потенциалы свободной коррозии и питтингообразования растут в ряду $Li \rightarrow Na \rightarrow K$ (таблица 11).

Также отмечается тенденция роста величины плотности тока и скорости коррозии с увеличением концентрации хлорид-иона в электролите. Данная тенденция отмечается для всех исследованных сплавов и не зависит от состава и содержания легирующих компонентов. Наблюдается уменьшение скорости коррозии при переходе от сплавов с литием к сплавам с натрием и калием. Для цинкового сплава ЦАМСв4-1-2,5 также характерен рост скорости коррозии с увеличением концентрации Сl⁻ в электролите NaCl (таблица 12).

Таблица 12. Зависимость плотности тока коррозии и скорости коррозии цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием,

в среде электролита NaCl

Спото	Содержание Li, Na и K в сплаве, мас. %	Скорость коррозии					
Среда NaCl, мас. %		Сплавы с Li		Сплавы с Na		Сплавы с К	
		$i_{\mathrm{kop.}},$	$K \cdot 10^2$,	$i_{ ext{kop.}},$	$K \cdot 10^2$,	$i_{\mathrm{kpp.}},$	$K \cdot 10^2$,
		A/m^2	г/м ² ·ч	A/m^2	г/м ² ·ч	A/m^2	г/м ² ·ч
0.03	-	0,76	92,72	0,76	92,72	0,76	92,72
	0.05	0,75	91,50	0,69	84,18	0,68	82,96
	0.1	0,73	89,06	0,67	81,74	0,66	80,52
	0.5	0,71	86,62	0,65	79,30	0,64	78,08
	1.0	0,69	84,18	0,63	76,86	0,62	75,64
0.3	-	0,90	109,8	0,90	109,8	0,90	109,8
	0.05	0,89	108,5	0,83	101,2	0,82	100,0
	0.1	0,87	106,1	0,81	98,82	0,80	97,60
	0.5	0,85	103,7	0,79	96,38	0,78	95,16
	1.0	0,83	101,2	0,77	93,94	0,76	92,72
3.0	-	0,102	124,4	0,102	124,4	0,102	124,4
	0.05	0,99	120,7	0,96	117,1	0,93	113,4
	0.1	0,97	118,3	0,94	114,6	0,91	111,0
	0.5	0,95	115,9	0,92	112,2	0,89	108,5
	1.0	0,93	113,4	0,90	109,8	0,87	106,1

Таким образом установлено, что анодная устойчивость повышается на 10-15% при легировании до 1.0 мас. % литием, натрием и калием цинкового сплава ЦАМСв4-1-2,5, в среде электролита NaCl.

выводы

- 1. На основе анализа литературных данных сделан вывод о необходимости исследования физико-химических свойств цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием с целью разработки новых сплавов, использующихся в качестве анодных защитных покрытий для защиты от коррозии стальных сооружений и конструкций, а также в других отраслях техники.
- 2. Температурная зависимость теплоемкости цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием изучена в режиме «охлаждения». Показано, что с ростом содержания легирующего компонента и температуры теплоемкость сплавов уменьшается, а от температуры растёт. При переходе от сплавов с литием к сплавам с натрием и калием теплоемкость сплавов снижается.
- 3. Для цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием изучены зависимости изменений термодинамических функций от температуры и показано, что при переходе от сплавов с литием к сплавам с натрием и калием величины энтальпии и энтропии уменьшаются. При увеличении температуры величины энтальпии и энтропии повышаются, а энергия Гиббса уменьшается.

- 4. Исследованием микроструктуры и твердости цинкового сплава ЦАМСв4-1-2,5, модифицированного щелочными металлами установлено, что в результате модификации двойной и тройной эвтектики сплава происходит рост его твердости и прочности.
- 5. Кинетика окисления цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием изучалась термогравиметрическим методом. Показано, что окисление исследуемых сплавов описывается гиперболическим уравнением, при этом истинная скорость окисления сплавов составляют величину ~10⁻⁴ кг·м⁻²·сек⁻¹; минимальные скорости окисления отмечены у сплава ЦАМСв4-1-2,5, легированного литием, максимальные скорости окисления имеют сплавы, легированные калием. Максимальные величины кажущейся энергии активации отмечаются у сплавов, легированных литием, минимальные у сплавов с калием.
- 6. Потенциостатическим методом в потенциодинамическом режиме со скоростью развертки потенциала 2 мВ/с исследовано анодное поведение цинкового сплава ЦАМСв4-1-2,5 с литием, натрием и калием. Показано, что добавки легирующих компонентов в количествах от 0.05 до 1.0 мас. %, несколько повышают коррозионную стойкость сплава ЦАМСв4-1-2,5, в нейтральной среде электролита NaCl. Исследованные цинковые сплавы с литием, натрием и калием, имея потенциал свободной коррозии -1.103 ÷ -1.030 В, в среде электролита 3.0%-ного NaCl могут служить в качестве анодного защитного покрытия для защиты стали от коррозии.
- 7. На основании выполненных исследований разработаны составы новых сплавов, которые защищены двумя малыми патентами Республики Таджикистан № ТJ1260 от 10.05.2022г и № ТJ1268 от 15.06.2022г.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ИЗЛОЖЕНО В СЛЕДУЮЩИХ ПУБЛИКАЦИЯХ:

Статьи, опубликованные в научных журналах, рекомендованных ВАК Министерства науки и высшего образования Российской Федерации

- 1. Ганиев И.Н., **Алиева Л.3**., Бердиев А.Э., Алихонова С.Дж. Кинетика окисления цинкового сплава ЦАМСв4-1-2,5 с натрием в твердом состоянии // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1. Естественные и технические науки. -2022. -№ 1. С. 97-102.
- 2. Ганиев И.Н., **Алиева Л.З**., Бердиев А.Э., Алихонова С.Дж. Кинетика окисления цинкового сплава ЦАМСв4-1-2,5, легированного литием // Вестник Казанского государственного технического университета им. А.Н. Туполева. 2021. -T.77. № 4. C.3-8.
- 3. Ганиев И.Н., **Алиева Л.З.**, Бердиев А.Э., Алихонова С.Дж. Влияние добавок калия на теплофизические свойства и термодинамические функции цинкового сплава ЦАМСв4-1-2,5 // Вестник Казанского государственного технического университета им А.Н. Туполева. -2021. -Т.77. -№ 3. -С.3-9.
- 4. Ганиев И.Н., **Алиева Л.З.**, Бердиев А.Э., Алихонова С.Дж. Коррозионно-электрохимическое поведение цинкового сплава ЦАМСв4-1-2,5, легированного калием, в среде электролита NaCl // Вестник Санкт-

Петербургского государственного университета технологии и дизайна. Серия 1. Естественные и технические науки. -2021. -№ 3. - C. 55-60.

5. Ганиев И.Н., **Алиева Л.З**., Бердиев А.Э., Алихонова С.Дж. Влияние натрия на теплоемкость и термодинамические функции цинкового сплава ЦАМСв4-1-2,5//Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1. Естественные и технические науки. - 2021. - № 2. -С. 107-112.

Изобретения по теме диссертации

- 6. Малый патент Республики Таджикистан № ТJ1268. Цинковый сплав / Ганиев И.Н., Бердиев А.Э., **Алиева Л.З.**, Абдухоликова П.Н., Аминова Н.А., Алихонова С.Дж., Якубов У.Ш. // Приоритет изобретения от 31.08.2021 (дата госрегистрации 15.06.2022).
- 7. Малый патент Республики Таджикистан № ТЈ 1260. Способ получения коррозионностойких цинково-алюминиевых сплавов с щелочными металлами / Ганиев И.Н., Бердиев А.Э., **Алиева Л.З.**, Шарифзода Н.В., Абдухоликова П.Н., Аминова Н.А., Алихонова С.Дж., Якубов У.Ш. // Приоритет изобретения от 27.09.2021 (дата госрегистрации 10.05.2022).

Статьи, опубликованные в материалах международных и республиканских конференций:

- 8. Ганиев И.Н., **Алиева Л.З**., Бердиев А.Э., Алихонова С.Дж. Влияние добавок лития на теплофизические свойства и термодинамические функции цинкового сплава ЦАМСв4-1-2,5 // Вестник Саратовский государственный технический университет. -2022. -№2 (93). -С.70-81.
- 9. Ганиев И.Н., **Алиева Л.З**., Бердиев А.Э., Алихонова С.Дж. Влияние добавок лития на коэффициент теплоотдачи цинкового сплава ЦАМСв4-1-2,5 // Мат. Респ. научно-практ. конф. «Развитие энергетической отрасли в Республике Таджикистан». Технический колледж ТТУ им. М.С. Осими (г. Душанбе, 22 декабря 2021 г). Душанбе. -2021. -С.78-83.
- 10. Ганиев И.Н., **Алиева Л.З**., Алихонова С.Д., Бердиев А.Э. Влияние натрия на удельную теплоемкость цинкового сплава ЦАМСв4-1-2,5 // Мат. Респ. научно-прак. конф. «Основные проблемы полной переработки хлопка в Республике Таджикистан», посвященного объявлению четвертой стратегической задачи быстрой промышленной индустриализации страны и 65-летию создания кафедры «Технологии переработки природного волокна», ТТУ им. М.С. Осими (г. Душанбе, 15 апреля 2021 г). Душанбе. -2021. -С.152-155.
- 11. Ганиев И.Н., **Алиева Л.З.**, Бердиев А.Э., Алихонова С.Д. Влияние калия на удельную теплоемкость цинкового сплава ЦАМСв 4-1-2,5 // Мат. Меж. научно-прак. конф. «Достижение химической науки за 30 лет государственной независимости республики Таджикистан. посвящ. 75-летию Института химии имени В.И. Никитина и 40-летию лаборатории «Коррозионностойких материалы» (г. Душанбе, 27 октябр 2021 г). Душанбе. 2021. С.106-109.
- 12. Ганиев И.Н., **Алиева Л.З.**, Бердиев А.Э., Алихонова С.Д. Термодинамические функции цинкового сплава ЦАМСв 4-1-2,5, легированного

- натрием // Мат. Респ. научно-практ. конф. «Роль естественных наук и математика в подготовке современных научных кадров, преподавание и инжиниринг», посвящ. 20-летию изучения и развития естественных, точностых и математических в наук и образовании (2020-2040), 30 лет Государственная независимость РТ и 90-летие ТГПУ им. С. Айни (г. Душанбе, 14 сентября 2021 г). Душанбе. 2021. С. 203-206.
- 13. Ганиев И.Н., **Алиева Л.З.**, Бердиев А.Э., Алихонова С.Дж. Теплоемкость и коэффициент теплоотдачи цинкового сплава ЦАМСв4-1-2,5 с калием // Мат. Респ. научно-практ. конф. «Фундаментальная наука основа совершенствования технологий и материалов», посвящ. 30-летию Государственной независимости Республики Таджикистан, ГНУ Центр исследований инновационных технологий при НАНТ (г. Душанбе, 3 ноября 2021 г), Душанбе. 2021. С. 17-20.
- 14. Ганиев И.Н., **Алиева Л.З**., Бердиев А.Э., Алихонова С.Дж. Влияние лития на кинетику окисления цинкового сплава ЦАМСВ4-1-2,5 // Мат. Межд. научно-практ. конф. «Роль Российско-Таджикского (солавянского) университета в становлении и развитии науки и инновационного образования в Республике Таджикистан», посвящ. 30-летию независимости РТ и 25-летию РТСУ (г. Душанбе, 15-16 октября 2021 г). Душанбе. -2021. -C.20-25.
- 15. Ганиев И.Н., **Алиева Л.З**., Бердиев А.Э., Алихонова С.Дж. Потенциал свободной коррозии цинкового сплава ЦАМСв4-1-2,5, легированного литием // Мат. Респ. научно-практ. конф. «Современные проблемы естественных наук», посвящ. 30-летию независимости Республики Таджикистан и 25-летию РТСУ (г. Душанбе, 26 мая 2021 г). Душанбе. -2021. С. 92-95.